

Fig. 8.7 The mass m is in a mine located at a depth d below the surface of the Earth of mass M_E and radius R_E . We treat the Earth to be spherically symmetric.

Again consider the earth to be made up of concentric shells as before and a point mass m situated at a distance r from the centre. The point P lies outside the sphere of radius r. For the shells of radius greater than r, the point P lies inside. Hence according to result stated in the last section, they exert no gravitational force on mass m kept at P. The shells with radius $\leq r$ make up a sphere of radius r for which the point P lies on the surface. This smaller sphere therefore exerts a force on a mass m at P as if its mass M_r is concentrated at the centre. Thus the force on the mass m at P has a magnitude

$$F = \frac{Gm \left(M_{\rm r}\right)}{r^2} \tag{8.9}$$

We assume that the entire earth is of uniform

density and hence its mass is $M_{\rm E} = \frac{4\pi}{3} R_{\rm E}^3 \rho$ where $M_{\rm E}$ is the mass of the earth $R_{\rm E}$ is its radius and ρ is the density. On the other hand the mass of the sphere $M_{\rm E}$ of radius r is $\frac{4\pi}{2} \rho r^3$ and

hence

$$F = Gm \left(\frac{4p}{2}r\right) \frac{r^3}{2} = Gm \left(\frac{M_E}{2}\right) \frac{r^3}{2}$$

$$F = Gm\left(\frac{1}{3}r\right)\frac{1}{r^{2}} = Gm\left(\frac{1}{R_{E}^{3}}\right)\frac{1}{r^{2}}$$
$$= \frac{GmM_{E}}{R_{E}^{3}}r$$
(8.10)

If the mass m is situated on the surface of earth, then $r = R_E$ and the gravitational force on it is, from Eq. (8.10)

$$F = G \ \frac{M_E m}{R_E^2} \tag{8.11}$$

The acceleration experienced by the mass m, which is usually denoted by the symbol *g* is related to F by Newton's 2^{nd} law by relation F = mg. Thus

$$g = \frac{F}{m} = \frac{GM_E}{R_E^2} \tag{8.12}$$

Acceleration g is readily measurable. R_E is a known quantity. The measurement of G by Cavendish's experiment (or otherwise), combined with knowledge of g and R_E enables one to estimate M_E from Eq. (8.12). This is the reason why there is a popular statement regarding Cavendish : "Cavendish weighed the earth".

8.6 ACCELERATION DUE TO GRAVITY BELOW AND ABOVE THE SURFACE OF EARTH

Consider a point mass *m* at a height *h* above the surface of the earth as shown in Fig. 8.8(a). The radius of the earth is denoted by R_E . Since this point is outside the earth,

Fig. 8.8 (a) g at a height h above the surface of the earth.

its distance from the centre of the earth is $(R_E + h)$. If F(h) denoted the magnitude of the force on the point mass m, we get from Eq. (8.5) :

$$F(h) = \frac{GM_{E}m}{(R_{E} + h)^{2}}$$
(8.13)

The acceleration experienced by the point mass is $F(h)/m \equiv g(h)$ and we get